EDITOR’S CHOICE IN GENETICS & GENOMICS
The paper
B.T. Hofmeister et al., “A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa,” Genome Biol, 21:259, 2020.
Like animals, plants can accumulate alterations in their epigenomes—the pattern of epigenetic marks on their DNA. So far, researchers have only examined the epigenomes of short-lived annual plant species. As a result, it has been impossible to tell if those mutations arise throughout development or just during gamete production, as many in the field assumed, explain long-time collaborators Frank Johannes of the Technical University of Munich’s Institute for Advanced Study (TUM-IAS) and the University of Georgia’s Bob Schmitz, who has a fellowship at TUM-IAS.
To understand how DNA methylation changed over time in long-lived species,...
The study is an important starting point for understanding how the epigenome changes over time in long-lived plant species, says West Virginia University forest geneticist Stephen DiFazio. “That stuff is novel, and it’s really important, because that’s a dimension of genomic variation that is not well understood currently,” he says. “The paper raised probably more questions than it answered, but that’s to be expected for something that’s kind of a breakthrough first step.”
Johannes and Schmitz’s team also created a software package that researchers can use to estimate epimutation rates to calculate the age of trees. “In a sense, these epimutation clocks are better than genetic clocks in some settings,” says Johannes. Because epimutations are happening 10,000 to 100,000 times faster than genetic mutations, it provides a finer scale of resolution. “We get a lot more events happening so the clock ticks faster.”
Correction (March 2): This story has been updated from its original version to correct the species name from Populus tremuloides to Populus trichocarpa. The Scientist regrets the error.